Два направления в эволюции живого

Оргел рассматривает два направления в эволюции живого: жизнь без нуклеиновых кислот и жизнь без белка. Следуя Оргелу, попытаемся рассмотреть обе возможности, хотя с эволюционной точки зрения такое разделение выглядит маловероятным.
Образование полипептидов в предбиологических условиях — процесс более «выгодный», нежели синтез полинуклеотидов. Это подтверждено многими лабораторными экспериментами и обусловлено, в частности, тем, что сахара, входящие в нуклеиновые кислоты, менее стабильны в водном растворе, чем аминокислоты, что затрудняет их концентрирование.

Таким образом, небиологическая полимеризация аминокислот, по-видимому, предшествовала появлению нуклеиновых кислот.
Именно на основании этого предположения Оргел строит модель жизни без нуклеиновых кислот, хотя, в общем-то, совершенно ясно, что в первичном бульоне было «всё» и анализ таких крайних случаев, на мог взгляд, представляет только чисто умозрительный интерес.

Абиотически синтезированные полимеры аминокислот, по мнению Оргела, не могли достичь высокой степени специализации и организации и проявить свойства ферментативной активности. Репликация с помощью белков не могла быть точной, и для построения каждого «сорта» цепи аминокислот требовался новый фермент.

Это не совсем верное предположение, потому что вполне было возможно возникновение неспецифического катализа, что снимает основные возражения Оргела против чисто белковой жизни. Во всяком случае, мысль Оргела о неспособности чисто полипептидной системы к направленной эволюции следует считать справедливой, поскольку нет структурной основы для точной репликации.
В качестве второй возможности Оргел предлагает модель жизни, основанной на нуклеиновых кислотах без «белкового кода». При этом он указывает на необходимость анализа двух ключевых процессов: репликации без белков (ферментов) и эволюции без белков.

Комплементарная репликация постулируется Оргелом как свойство внутреннее, присущее молекулам нуклеиновых кислот и зависящее только от их структуры. Доказательство этого положения можно найти в физико-химических свойствах оснований нуклеиновых кислот и их производных — правиле Чаргаффа. Сравнительно недавно биохимики продемонстрировали, что полинуклеотидная цепочка работает как матрица для ориентации мононуклеотидов.

Было показано также, что направленный матричный синтез нуклеотидов идёт в водном растворе с использованием конденсирующего агента (карбодиимид). Но здесь очень важно отметить, что во всех опытах по матричному синтезу образуются не только природные изомеры полинуклеотидов. В значительных количествах присутствуют изомеры с неприродными химическими связями, которые никогда не встречаются в живых клетках.

Постулируя нуклеиновую схему, легко получить реплицирующиеся системы, используя, например, полиматрицу аденин-цитозин, которая будет направлять синтез полинуклеотида урацил-гуанин в соответствии с правилом Чаргаффа, и наоборот.
Очень интересен вопрос о том, какого уровня организации может достичь система без синтеза белка и соответственно репликации нуклеиновых кислот.

Здесь Оргел выдвигает ряд интересных идей. Он подчёркивает, что одноцепочечные нуклеиновые кислоты, имея определённую пространственную структуру, могли бы обладать каталитическими функциями. С другой стороны, кажется весьма вероятным, что полинуклеотидные цепи могли осуществлять некоторый отбор среди аминокислот, образуя с ними стереоспецифические комплексы. Но это тоже своего рода тупик, потому что без белков всё-таки жить нельзя.

Таким образом, возможность протеиновой жизни ограничена невозможностью достижения уровня генетического механизма, а нуклеиновая жизнь ограничена собственной химической инертностью. Центральная проблема — возникновение кода, в котором тесно связаны генетический нуклеиновый и функциональный белковый аппараты клетки.

Оргел указывает на очень интересную возможность пути возникновения эволюционирующей системы. Если гипотетический полипептид, состоящий из аминокислот… глицин, аланин, глицин, аланин… и так далее, ускоряет матричную репликацию полимеров, содержащих, например, аденин и урацил, то система, содержащая полиматрицу аденин-урацил, аминокислоты и транспортные РНК, способна развиваться, могут образовываться новые полипептиды.

Можно, по-видимому, разработать немало модификаций такой схемы, но прежде всего хочется сделать небольшое резюме. Основная ценность работ Крика и Оргела состоит в том, что ни тот, ни другой не оставляют места необоснованному оптимизму в решении проблемы происхождения жизни. Грандиозная трудность проблемы возникновения кода и его эволюции исключительно наглядно и убедительно продемонстрирована в этих работах.

Именно удивительное свойство универсальности кода приводит нас к выводу, что современный механизм наследственности сформировался за поразительно короткий промежуток времени (по сравнению с «возрастом» живых систем) — менее одного миллиарда лет. Этот факт сильно затрудняет решение проблемы происхождения жизни.

Где механизмы-предшественники? Их, к сожалению, нет.
Вот если бы удалось показать возможность прямого синтеза белка на ДНК-матрице, это было бы огромным достижением. Мы смогли бы тогда получить сведения об эволюционном развитии современного матричного синтеза белка. Но сегодня существуют, к сожалению, лишь косвенные данные о возможности прямого синтеза белка на органических матрицах.

Как бы то ни было, сейчас уже видно несколько направлений для работ в области молекулярной эволюции. Можно было бы, скажем, посмотреть, как ведут себя и как взаимодействуют короткие полипептидные и полинуклеотидные цепочки. Возьмём, к примеру, декапептид — пептид, состоящий из 10 аминокислотных остатков. Предположим дополнительно, что сначала при построении пептидов использовалось не двадцать, а всего лишь семь аминокислот.

Можно с полной уверенностью сказать, что в смеси, содержащей семь аминокислот, будет образовываться не 710 декапептидов с равной вероятностью каждый, а гораздо меньше. Хотя бы потому, например, что одной аминокислоты окажется больше, чем другой. В таком случае синтез декапептида пойдёт уже не только по вероятностным законам, но будет определяться и такими факторами, как концентрация аминокислот в реакционной смеси, кислотность среды и так далее. И может случиться, в этой смеси будут синтезироваться не миллиарды, а только десятки разных типов декапептидов, что уже вполне поддаётся экспериментальной проверке.

И вот тут-то можно наткнуться на очень интересные вещи: декапептид вполне может обладать каталитической активностью.
Предположим, что он способствует полимеризации нуклеотидов, то есть работает как синтетаза. Тогда нам удастся запустить механизм репликации. Эта пока спекулятивная идея, конечно же, нуждается в проверке. Отметим, что подобные опыты уже ведутся.
Особенно внушительные экспериментальные подходы были разработаны в лаборатории того же Фокса. Не будем сейчас обращать внимания на то, в какой мере эти опыты соответствуют условиям примитивной Земли, отметим, что они имеют исключительное значение для изучения проблемы происхождения жизни.

Фоксу удалось установить, что уже на стадии термического синтеза аминокислот возникает исключительно важное свойство органических молекул: свойство самоупорядоченности или самоорганизации, которое в данном конкретном случае (синтез протеноида) проявляется в том, что соотношение аминокислот в исходной реакционной смеси сильно отличается от аминокислотного состава синтезированного полимера. Это свидетельствует, что включение аминокислот в полимер происходит не статистически и существует некоторая избирательность, являющаяся прямым следствием химических свойств самих аминокислот.

Ещё раз напомним, что полученные полимеры обладают рядом свойств, которые указывают на их известную общность с природными белками. Это в первую очередь качественный и количественный аминокислотный состав протеиноида, в общем-то идентичный среднему аминокислотному составу белка; молекулярные веса, соответствующие молекулярным весам небольших белковых молекул; растворимость, схожая с растворимостью белков, и ряд других свойств, среди которых, конечно же, одно из основных — каталитическая активность.

Правда, каталитическая активность протеиноидов весьма слаба, однако это свойство могло бы закрепляться в процессах молекулярного отбора. Наиболее важным свойством протеиноидов является их способность образовывать в растворе морфологические единицы, протеиноидные микросферы. Нужно только отдавать себе полный отчёт в том, что в протеиноидных микросферах отсутствует направленный синтез биополимеров и кодирующая система. Поэтому их, бесспорно, нельзя считать живыми системами.
Исключительную важность представляют эксперименты, в которых делаются попытки моделировать начальные пути биосинтеза белка.

Фокс исследовал взаимодействие полиаминокислот и мононуклеотидов. В процессе этих опытов удалось установить, что полиаргинин по-разному взаимодействует с аденином и урацилом. Точно так же и полилизин по-разному реагировал на различные типы нуклеиновых оснований.
Ну чем не начало кодирования? Конечно, на самом примитивном уровне.

В лаборатории Фокса изучалось и взаимодействие термически синтезированных протеиноидов, образующих морфологические структуры с различными полинуклеотидами. В результате этих исследований было установлено, что протеиноид определённого типа имеет различное химическое сродство к разным полинуклеотидам. Они объединились, и вновь образованные структуры можно было бы рассматривать как предшественники рибосом, прарибосомы.

Данные некоторых опытов, проведённых в лаборатории Фокса, свидетельствуют о возможном дорибосомальном механизме трансляции.
Конечно, эти эксперименты нужно расценивать как первые шаги в новой области до- биологического синтеза — моделировании динамических процессов. Основная трудность здесь в том, что в лабораторных экспериментах концентрации реагентов могут очень сильно отличаться от реальных природных концентраций, соответствующих геологическим и геохимическим условиям, которые существовали на примитивной Земле около 4 миллиардов лет назад. Пока именно это обстоятельство кажется наиболее уязвимым местом в изложенных выше результатах.

Тем не менее мне думается, что именно теоретическое и экспериментальное моделирование динамических клеточных процессов — самое важное направление в работах по проблеме происхождения жизни. Вряд ли кто-нибудь, даже самый большой оптимист, считает, что в ближайшее время удастся синтезировать живой организм, однако мне кажется, что именно усилия в изучении эволюции механизмов репликации и синтеза уже в ближайшее время, несомненно, принесут большие открытия.

Попробуем немного пофантазировать и представить себе гипотетическую последовательность событий, которые могли иметь место на примитивной Земле после того, как сформировалось достаточное количество предшественников белков. Исходная посылка состоит в том, что до возникновения нуклеотидов и полинуклеотидов шла продолжительная эволюция пептидов и полипептидов. Бесспорно, что параллельно происходило образование других классов биологически важных соединений, в том числе предшественников нуклеиновых кислот. Однако в любой момент времени концентрация полипептидов была заметно больше концентрации полинуклеотидов.

Здесь мне хотелось бы обратить внимание на хорошо известный биологам механизм, не требующий в принципе участия нуклеиновых кислот, — механизм самосборки. Вполне можно предположить, что на ранних этапах эволюции самосборка происходила автономно. Характерным примером является самосборка низкомолекулярного белка грамицидина, не требующая генетического контроля.

Сейчас есть все основания считать, что процесс самосборки был определяющим при образовании примитивных клеточных мембран, которые могли состоять из полипептидов и предшественников липидов. На этой ступени эволюции появились первые морфологические единицы, которые ещё нельзя назвать клетками, — это были просто микросферы. Но с возникновением таких микросфер стала возможна дальнейшая эволюция биополимеров.

Обладая большой концентрационной способностью, микросферы резко ускорили ход химических реакций. Нельзя исключить, что на примитивных мембранах начались процессы синтеза полинуклеотидов, которые катализировались полипептидами, входящими как составные части в примитивную мембрану.

Таким образом, на этом этапе мог бы осуществляться процесс протобелок протонуклеиновая кислота. С появлением первых матриц мог начаться в том или ином виде прямой матричный синтез полипептидов. Достаточно было появления полипептида, который умел хотя бы немного «помогать» процессу репликации, и тогда сразу же мог возникнуть другой процесс: процесс снятия копий — начало протожизни.

Эти предклетки должны были обладать достаточной устойчивостью к воздействию внешних условий. Они должны были иметь своё и весьма продолжительное «время жизни». Процесс репликации мог происходить и без участия ферментов, просто за счёт изменения параметров среды, например, изменения температуры или кислотности раствора.

Схемы эволюции можно представить следующим образом: сначала был первичный океан. Затем под воздействием источников энергии на атмосферу и переноса продуктов реакций образовался разбавленный раствор мономеров. Потом в результате медленной эволюции возникла жизнь. Это классическая схема зарождения жизни в океане.

Возможен и другой вариант, связанный, например, с районами активной вулканической деятельности. В этом случае последовательность событий можно представить так. В некоторых локальных областях образуется концентрированный раствор мономеров (аминокислот и так далее). Мы уже видели, что вполне возможны реакции полимеризации этих мономеров. Следующим этапом является концентрирование полимеров на минералах. Это даёт возможность для образования протоклеток и «включения» механизмов самосборки. Затем происходит дополнительное концентрирование органического материала в протоклетках.
Именно на этой стадии возникает примитивный прямой матричный механизм. Природа слепа, она работает методом проб и ошибок. С того момента, как она «нашла» прямое матричное копирование, могли пройти ещё многие миллионы лет, прежде чем возник со¬временный вариант трансляционного механизма.

В рамках этой схемы тоже очень трудно представить себе, как могли возникнуть трансляция и код и почему код оставался неизменным в течение 3,5 миллиарда лет. «Глядя» на генетический код, невольно думаешь о том, что в какой-то момент времени природа получила удовлетворение от своей работы и сочла этот этап своей деятельности завершённым.

Стратегическое направление исследований — изучение возникновения динамической организации — сейчас на начальной стадии. Слишком много сегодня нерешённых вопро¬сов в этой области. Полезно их перечислить.

Как возникло кодовое соответствие между полинуклеотидами и полипептидами?
Как возникла транскрипция и трансляционный аппарат?
Как возник информационный поток между полимерами?
Как возникло сопряжение механизмов транскрипции и трансляции?

В биологии XX века произошла революция: родилась новая наука — молекулярная биология.

Бесспорно, начало этой революции следует приурочить к определению структуры ДНК. Крик назвал это событие «концом начала». Когда устанавливали структуру генетического кода, Крик сказал, что это — «начало конца». Он имел здесь в виду, что главное в молекулярной биологии уже сделано. С этим вряд ли можно согласиться.

Величайшая загадка молекулярной эволюции ещё ждёт своего решения. Сегодняшний день в проблеме происхождения жизни — начало начал.